Обзор блока питания PCCooler KN1000 (P3-KN1000-G1F)

Блоки питания особо высокой мощности (от 1000 Вт) приобретают, как правило, для специфических задач — для специализированных тестовых систем, для высоконагруженных компьютеров для рендеринга, расчетов, а также для разгона. Впрочем, иногда такие источники питания приобретают, просто желая создать ощутимый запас по мощности для существующей системы или в расчете на будущий апгрейд. Стоимость подобных решений может сильно отличаться, что ставит покупателя перед непростой задачей выбора модели с нужным соотношением цены и потребительских качеств. Сегодня мы рассмотрим одно из доступных на рынке решений.

В этот раз мы познакомимся с блоком питания PCCooler KN1000 (P3-KN1000-G1F) мощностью 1000 Вт, который имеет сертификат 80+ Gold. Блок питания соответствует стандарту ATX 3.1 и позволяет питать очень мощные современные видеокарты через 16-контактный разъем PCIe 5.1 (12V-2×6). В данной серии существуют также модели мощностью 650, 750 и 850 Вт.

Дизайн данной модели весьма неплох, но применение штампованной решетки над вентилятором чревато повышенным уровнем шума при работе. Впрочем, сейчас штампованные решетки применяются всё чаще и чаще, так как они, видимо, проще в изготовлении, а БП с такими решетками чуть дешевле в производстве.

Блок питания имеет один режим охлаждения: активный, с постоянно вращающимся вентилятором.

Длина корпуса БП составляет около 140 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 160 мм. Для блоков питания подобной мощности эти размеры можно считать минимальными.

Розничные предложения

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 999,6 Вт. Соотношение мощности по шине +12VDC и полной мощности максимально близко к единице, что, разумеется, является отличным показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
8 pin SSI Processor Connector 2 разборные
4 pin 12V Power Connector
16 pin PCIe 5.1 VGA Power Connector 1
8 pin PCIe 2.0 VGA Power Connector 3 на 3 шнурах
6 pin PCIe 1.0 VGA Power Connector
15 pin Serial ATA Connector 9 на 4 шнурах
4 pin Peripheral Connector 3
4 pin Floppy Drive Connector

Длина проводов до разъемов питания

Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.

  • 1 шнур: до основного разъема АТХ — 60 см
  • 2 шнура: до процессорного разъема 8 pin SSI — 65 см
  • 1 шнур: до разъема питания видеокарты PCIe 5.1 VGA Power Connector (12V-2×6) — 60 см
  • 3 шнура: до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 50 см
  • 1 шнур: до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго и еще 15 см до третьего такого же разъема
  • 3 шнура: до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго такого же разъема, плюс еще 15 см до разъема Peripheral Connector («молекс»)

Длина проводов средняя, она является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъемов питания процессора — по 65 см. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, один из шнуров вполне можно было бы сделать и более длинным: скажем, 75-80 см, чтобы обеспечить максимальное удобство работы при сборке системы.

Одной из особенностей данной модели является наличие штатной возможности подключить видеокарту с новым разъемом питания PCIe 5.1 (12V-2×6) без использования переходников.

Также этот блок питания позволяет подключить (без переходников и разветвителей) 9 устройств с питанием SATA Power. Все периферийные разъемы, включая SATA Power, расположены на четырех шнурах, что должно быть удобно, особенно, если нужно обеспечить питанием несколько зон установки накопителей.

Все разъемы SATA Power, за исключением одного единственного, угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.

Провода тут использованы ленточные, которые более удобны при сборке и дальнейшей эксплуатации.

Сами провода мягкие и хорошо изгибаются, что косвенно свидетельствует о высоком содержании меди.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.

Высоковольтные силовые элементы установлены на нескольких радиаторах разных размеров, транзисторы синхронного выпрямителя установлены с лицевой стороны основной печатной платы, на них нет радиаторов, но вокруг места установки есть теплорассеивающие элементы.

Элементы импульсных преобразователей каналов +3.3VDC и +5VDC размещены на дочерней печатной плате, установленной вертикально.

В блоке питания в низковольтной части установлены конденсаторы Samxon (Гонконг).

Входной конденсатор выпущен под торговой маркой TK (Toshin Kogyo), это японский бренд, имеющий производственные площадки в Японии, Китае и на Тайване.

Установлено и большое количество полимерных конденсаторов.

В случае относительно бюджетного продукта это вполне ожидаемое решение.

В блоке питания установлен вентилятор Poweryear PY-1225M12S типоразмера 120 мм, подключение двухпроводное, через разъем. Вентилятор основан, скорее всего, на обычном подшипнике скольжения, это самый дешевый вариант, но и его, как правило, на гарантийный срок блока питания хватает.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
более 5% неудовлетворительно
+5% плохо
+4% удовлетворительно
+3% хорошо
+2% очень хорошо
1% и менее отлично
−2% очень хорошо
−3% хорошо
−4% удовлетворительно
−5% плохо
более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 1% во всем диапазоне мощности, что является хорошим результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 1% по каналу +3.3VDC, 1% по каналу +5VDC и 1% по каналу +12VDC.

Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.

При нагрузке через три разъема PCIe 2.0 максимальная мощность по каналу +12VDC составляет не менее 525 Вт при отклонении в пределах 3%.

Аналогичный тест был проведен и на мощности 650 Вт, значительных отклонений он тоже не выявил.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.

При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет не менее 500 Вт при отклонении в пределах 3%.

В случае системной платы максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.

Таким образом, индивидуальная нагрузочная способность тут высокая.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cooler Master V1000 Platinum (2020) 19,8 21,0 25,5 38,0 43,5 41,0 55,3
Thermaltake TF1 1550 13,8 15,1 17,0 24,2 30,0 42,0
Thermaltake GF1 1000 15,2 18,1 21,5 31,5 38,0 37,3 65,0
Chieftec PPS-1050FC 10,8 13,0 17,4 29,1 35,1 34,6 58,0
Deepcool PQ1000M 10,4 12,6 16,7 28,1 34,4
Gigabyte UD1000GM PG5 11,0 14,4 19,9 31,4 40,1 37,8 66,6
Thermaltake PF1 1200 Platinum 12,8 18,3 24,0 35,0 43,0 39,5 67,2
XPG CyberCore 1000 Platinum 10,1 19,6 21,6 33,9 37,4 36,7 57,7
Asus ROG Loki SFX-L 1000W Platinum 13,7 14,5 17,6 24,9 38,7
Thermaltake GF3 1000 8,8 17,0 21,7 35,5 44,8 41,6 70,5
Chieftronic PowerPlay GPU-1200FC 13,8 17,9 22,2 31,6 36,0 33,2 55,5
Galax Hall of Fame GH1300 12,7 14,2 18,2 24,7 29,9
Deepcool PX1200G 10,7 19,5 24,2 30,0 35,0
Chieftec Polaris Pro 1300W 13,2 16,9 20,3 28,2 32,6 31,9 48,0
Afox 1200W Gold 15,3 18,8 23,8 32,5 39,2 37,9 56,0
XPG Fusion 1600 Titanium 14,0 20,2 23,1 25,5 28,9 64,5
XPG CyberCore II 1000 Platinum 9,5 16,7 18,4 28,7 32,0 31,5 52,0
DeepCool PX1300P 17,0 17,8 19,1 28,0 30,0 44,5
Thermaltake GF A3 Gold 1200W 26,2 16,3 21,8 26,8 32,0 31,7 53,6
Formula VL-1000G5-MOD 15,2 15,3 20,1 30,7 40,6 39,2 69,0
Thermaltake Toughpower PF3 1200W 17,2 18,0 18,5 24,1 30,0 29,3 49,8
PCCooler YS1200 10,4 18,0 22,0 27,5 33,1
Formula V-Line APMM-1000GM 11,6 14,5 22,0 35,8 44,8 42,7 77,0
MSI MEG Ai1300P PCIE5 11,0 18,7 21,7 36,4 36,0 52,5
Deepcool PN1000M WH 9,7 20,7 24,3 35,6 40,7
GamerStorm PN1200M 9,6 21,1 28,0 48,5 56,5
GamerStorm PQ1000G 12,7 16,6 22,0 32,3 40,4 37,9 60,9
Ocypus Iota P1200 40,0 16,4 20,2 28,4 35,8
1stPlayer NGDP Gold 1000W 11,8 15,0 18,8 29,0 35,4
FSP Advan GM 1000W 14,6 17,9 22,5 33,1 40,5 71,8
PCCooler KN1000 (P3-KN1000-G1F) 9,9 14,5 18,8 30,2 38,3

Данная модель имеет высокую экономичность во всех протестированных режимах и находится на лидирующих позициях по этому параметру.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
Вт
Deepcool PQ1000M 68
Galax Hall of Fame GH1300 70
Thermaltake TF1 1550 70
Chieftec PPS-1050FC 70
Asus ROG Loki SFX-L 1000W Platinum 71
XPG CyberCore II 1000 Platinum 73
PCCooler KN1000 (P3-KN1000-G1F) 73
1stPlayer NGDP Gold 1000W 75
Gigabyte UD1000GM PG5 77
Thermaltake Toughpower PF3 1200W 78
PCCooler YS1200 78
Chieftec Polaris Pro 1300W 79
Formula VL-1000G5-MOD 81
DeepCool PX1300P 82
XPG Fusion 1600 Titanium 83
Thermaltake GF3 1000 83
GamerStorm PQ1000G 84
Formula V-Line APMM-1000GM 84
Deepcool PX1200G 84
XPG CyberCore 1000 Platinum 85
Chieftronic PowerPlay GPU-1200FC 86
Thermaltake GF1 1000 86
MSI MEG Ai1300P PCIE5 88
FSP Advan GM 1000W 88
Thermaltake PF1 1200 Platinum 90
Afox 1200W Gold 90
Deepcool PN1000M WH 90
Thermaltake GF A3 Gold 1200W 91
Cooler Master V1000 Platinum (2020) 104
Ocypus Iota P1200 105
GamerStorm PN1200M 107

В режимах с низкой нагрузкой эта модель занимает 7-е место в нашем рейтинге протестированных моделей с мощностью от киловатта. Это отличный результат. Впрочем, на более высокой мощности результаты гораздо менее впечатляющие.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cooler Master V1000 Platinum (2020) 305 1060 1975 3837 4761 4739 7054
Thermaltake TF1 1550 252 1008 1901 3716 4643 6938
Thermaltake GF1 1000 265 1035 1940 3780 4713 4707 7139
Chieftec PPS-1050FC 226 990 1904 3759 4688 4683 7078
Deepcool PQ1000M 223 986 1898 3750 4681
Gigabyte UD1000GM PG5 228 1002 1926 3779 4731 4711 7153
Thermaltake PF1 1200 Platinum 244 1036 1962 3811 4757 4726 7159
XPG CyberCore 1000 Platinum 220 1048 1941 3801 4708 4702 7076
Asus ROG Loki SFX-L 1000W Platinum 251 1003 1906 3722 4719
Thermaltake GF3 1000 209 1025 1942 3815 4772 4744 7188
Chieftronic PowerPlay GPU-1200FC 252 1033 1947 3781 4695 4671 7056
Galax Hall of Fame GH1300 243 1000 1911 3720 4642
Deepcool PX1200G 225 1047 1964 3767 4687
Chieftec Polaris Pro 1300W 247 1024 1930 3751 4666 4659 6991
Afox 1200W Gold 265 1041 1961 3789 4723 4712 7061
XPG Fusion 1600 Titanium 254 1053 1954 3727 4633 7135
XPG CyberCore II 1000 Platinum 215 1022 1913 3755 4660 4656 7026
DeepCool PX1300P 280 1032 1919 3749 4643 6960
Thermaltake GF A3 Gold 1200W 361 1019 1943 3739 4660 4658 7040
Formula VL-1000G5-MOD 265 1010 1928 3773 4736 4723 7174
Thermaltake Toughpower PF3 1200W 282 1034 1914 3715 4643 4637 7006
PCCooler YS1200 223 1034 1945 3745 4670
Formula V-Line APMM-1000GM 233 1003 1945 3818 4772 4754 7245
MSI MEG Ai1300P PCIE5 228 1040 1942 3823 4695 7030
Deepcool PN1000M WH 216 1057 1965 3816 4737
GamerStorm PN1200M 216 1061 1997 3929 4875
GamerStorm PQ1000G 243 1021 1945 3787 4734 4712 7104
Ocypus Iota P1200 482 1020 1929 3753 4694
1stPlayer NGDP Gold 1000W 235 1007 1917 3758 4690
FSP Advan GM 1000W 259 1033 1949 3794 4735 7199
PCCooler KN1000 (P3-KN1000-G1F) 218 1003 1917 3769 4716

В данном случае мы также приводим и измерения традиционного КПД. Результаты регистрировались при постоянной нагрузке на каналы +3.3VDC (5 Вт) и +5VDC (15 Вт) и изменяемой мощности по каналу +12VDC.

Всего таким образом мы измерили параметры блока питания в 10 точках. В результате максимальный КПД в нашем случае составил 93,5% при выходной мощности 500 Вт. Максимальная рассеиваемая мощность составила 97 Вт при работе на нагрузку 1000 Вт, что является очень хорошим показателем для блока питания подобной мощности.

Температурный режим

Термонагруженность конденсаторов при работе на мощности вплоть до максимальной находится на невысоком уровне, это заслуга постоянно вращающегося вентилятора.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

В диапазоне мощности до 500 Вт включительно шум блока питания находится на пониженном уровне для жилого помещения в дневное время суток.

При работе на мощности 600 Вт шум блока питания находится на повышенном уровне для жилого помещения в дневное время суток — чуть выше 38 дБА.

На мощности мощности 750 Вт уровень шума превышает 40 дБА — это высокий шум для жилого помещения в дневное время суток.

На максимальной мощности уровень шума превышает 50 дБА, подобный уровень шума является очень высоким не только для жилого, но и для офисного помещения.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 600 Вт, а при мощности нагрузки менее 500 Вт блок питания работает относительно тихо, но совсем тихим и тем более бесшумным он не бывает даже при очень низкой нагрузке.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния менее полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно.

В данном случае шум электроники минимальный, услышать его невозможно даже с минимального расстояния, не говоря уже о собранной системе.

Потребительские качества

Потребительские качества PCCooler KN1000 (P3-KN1000-G1F) находятся на хорошем уровне. Нагрузочная способность канала +12VDC высокая, что позволяет использовать данный БП в мощных системах с двумя видеокартами или одной максимально мощной.

С точки зрения акустической эргономики, блок питания обеспечивает комфорт при выходной мощности до 600 ватт, а при мощности до 500 Вт он работает относительно тихо, хотя и не бесшумно. Однако на максимальной мощности шум очень высокий.

Длина проводов достаточная для большинства современных корпусов, к тому же провода использованы ленточные и полностью съемные.

Также отметим возможность подключения видеокарты посредством разъема питания PCIe 5.1.

Итоги

PCCooler KN1000 (P3-KN1000-G1F) оставил в целом хорошее впечатление. Данная модель не претендует на лидирующие позиции, но представляет собой вполне качественный продукт с сертификатом 80+ Gold и довольно умеренной стоимостью. С положительной стороны стоит отметить наличие нового разъема PCIe 5.1 для подключения видеокарт (12V-2×6), невысокий уровень шума в широком диапазоне мощности (до 500 Вт), а также высокую экономичность.