Обзор блока питания Azza PSAZ-850G Fully modular

В этот раз мы познакомимся с блоком питания Azza PSAZ-850G Fully modular, который имеет сертификат 80+ Gold, соответствует стандарту ATX 3.1 и позволяет питать очень мощные современные видеокарты через 16-контактный разъем PCIe 5.1 (12V-2×6). В данной серии существуют также модели мощностью 750 и 1000 Вт. Существует и вариант данного блока питания с фиксированными проводами.

Выглядит блок питания довольно оригинально, правда решетка тут не просто штампованная, а еще и уменьшенных размеров, поэтому она имеет заметно большее аэродинамическое сопротивление по сравнению с проволочной решеткой, что особенно актуально у источников питания подобной мощности. Таким образом, тут дизайнеры победили инженеров.

Блок питания имеет два режима охлаждения: гибридный, в котором вентилятор может не вращаться при выполнении определенных условий по мощности нагрузки и/или температуре внутри БП, и активный режим охлаждения с постоянно вращающимся вентилятором. Переключаются режимы при помощи двухпозиционной кнопки, расположенной на задней (внешней) панели блока питания около клавиши отключения питания.

Длина корпуса БП составляет около 140 мм, дополнительно понадобится 15-20 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 160 мм. Для блоков питания подобной мощности эти размеры можно считать минимальными.

Розничные предложения

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 850 Вт. Соотношение мощности по шине +12VDC и полной мощности равно единице, что, разумеется, является отличным показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
8 pin SSI Processor Connector 2 разборные
4 pin 12V Power Connector
16 pin PCIe 5.1 VGA Power Connector 1
8 pin PCIe 2.0 VGA Power Connector 3 на 3 шнурах
6 pin PCIe 1.0 VGA Power Connector
15 pin Serial ATA Connector 8 на 2 шнурах
4 pin Peripheral Connector 4
4 pin Floppy Drive Connector

Длина проводов до разъемов питания

Все без исключения провода являются модульными, то есть их можно снять, оставив лишь те, которые необходимы для конкретной системы.

  • 1 шнур: до основного разъема АТХ — 60 см
  • 2 шнура: до процессорного разъема 8 pin SSI — 67 см
  • 1 шнур: до разъема питания видеокарты PCIe 5.1 VGA Power Connector (12V-2×6) — 60 см
  • 3 шнура: до разъема питания видеокарты PCIe 2.0 VGA Power Connector — 60 см
  • 2 шнура: до первого разъема SATA Power Connector — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема
  • 1 шнур: до первого разъема Peripheral Connector («молекс») — 45 см, плюс 15 см до второго, еще 15 см до третьего и еще 15 см до четвертого такого же разъема

Длина проводов до разъемов позволяет устанавливать этот БП в больших и высоких корпусах, включая Full tower, и на открытых стендах: до разъемов питания процессора — по 67 см.

Одной из особенностей данной модели является наличие штатной возможности подключить видеокарту с новым разъемом питания PCIe 5.1 (12V-2×6) без использования переходников.

Также этот блок питания позволяет подключить (без переходников и разветвителей) 8 устройств с питанием SATA Power. Однако все разъемы расположены всего на двух шнурах, что может оказаться неудобным, если нужно обеспечить питанием несколько зон установки накопителей. Наверное, мало кому сегодня нужно больше одного-двух SATA-накопителей, но что делать, если нужно? На наш взгляд, давно пора комплектовать БП для подключения периферии только шнурами с разъемами SATA Power, а экзотические устройства при необходимости подключать через переходники, но сейчас в комплект почти всех БП входит шнур с «молексами», который в 99% случаев нельзя ни на что заменить.

Все разъемы SATA Power, за исключением крайних, угловые, а использование таких разъемов не слишком удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы. Также в комплекте хотелось бы видеть не только стандартные шнуры, рассчитанные на подключение трех устройств, но и шнуры с 1-2 разъемами питания с прямым штекером для подключения устройств в местах со сложным доступом. Впрочем, в случае типовой системы с парой накопителей сложности маловероятны.

Провода тут использованы вполне обычные, но с имитацией нейлоновой (тканевой) оплетки. С точки зрения эксплуатации особых достоинств они не имеют.

Сами провода мягкие и хорошо изгибаются, что косвенно свидетельствует о высоком содержании меди.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет довольно широкий диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Конструкция блока питания вполне соответствует современным тенденциям: активный корректор коэффициента мощности, синхронный выпрямитель для канала +12VDC, независимые импульсные преобразователи постоянного тока для линий +3.3VDC и +5VDC.

Высоковольтные силовые элементы установлены на нескольких радиаторах разных размеров.

Синхронный выпрямитель собран на четырех транзисторах HYG009N04, которые установлены с лицевой стороны основной печатной платы, на них нет радиаторов, но вокруг места установки есть теплорассеивающие элементы.

Элементы импульсных преобразователей каналов +3.3VDC и +5VDC размещены на дочерних печатных платах, установленных вертикально.

Конденсаторы в блоке питания имеют японское происхождение. В основной массе это продукция под торговыми марками Nippon Chemi-Con и Rubycon.

Установлено и большое количество полимерных конденсаторов. Подобная комбинация обычно соответствует устройствам высокого уровня.

В блоке питания установлен вентилятор Yate Loon D12BH-12 типоразмера 120 мм, подключение двухпроводное, через разъем.

Вентилятор основан на подшипнике качения, что подразумевает максимально долгий срок его службы.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
более 5% неудовлетворительно
+5% плохо
+4% удовлетворительно
+3% хорошо
+2% очень хорошо
1% и менее отлично
−2% очень хорошо
−3% хорошо
−4% удовлетворительно
−5% плохо
более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 1% во всем диапазоне мощности, что является отличным результатом. При типичном распределении мощности по каналам отклонения от номинала не превышают 2% по каналу +3.3VDC, 3% по каналу +5VDC и 1% по каналу +12VDC.

Данная модель БП хорошо подходит для мощных современных систем из-за высокой практической нагрузочной способности канала +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании двух шнуров питания максимальная мощность по каналу +12VDC составляет не менее 350 Вт при отклонении в пределах 3%, что позволяет использовать очень мощные видеокарты.

При нагрузке через три разъема PCIe 2.0 максимальная мощность по каналу +12VDC составляет не менее 525 Вт при отклонении в пределах 3%.

Аналогичный тест был проведен и на мощности 650 Вт, значительных отклонений он тоже не выявил.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Этого вполне достаточно для типовых систем, у которых на системной плате есть только один разъем для питания процессора.

При нагрузке через два разъема питания процессора максимальная мощность по каналу +12VDC составляет не менее 500 Вт при отклонении в пределах 3%.

В случае системной платы максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.

Таким образом, индивидуальная нагрузочная способность тут высокая.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cougar BXM 700 12,0 18,2 26,0 42,8 57,4 57,1
Cooler Master Elite 600 V4 11,4 17,8 30,1 65,7 93,0
Cougar GEX 850 11,8 14,5 20,6 32,6 41,0 40,5 72,5
Cooler Master V650 SFX 7,8 13,8 19,6 33,0 42,4 41,4
Chieftec BDF-650C 13,0 19,0 27,6 35,5 69,8 67,3
XPG Core Reactor 750 8,0 14,3 18,5 30,7 41,8 40,4 72,5
Deepcool DQ650-M-V2L 11,0 13,8 19,5 34,7 44,0
Deepcool DA600-M 13,6 19,8 30,0 61,3 86,0
Fractal Design Ion Gold 850 14,9 17,5 21,5 37,2 47,4 45,2 80,2
XPG Pylon 750 11,1 15,4 21,7 41,0 57,0 56,7 111,0
Chieftronic PowerUp GPX-850FC 12,8 15,9 21,4 33,2 39,4 38,2 69,3
MSI MPG A750GF 11,5 15,7 21,0 30,6 39,2 38,0 69,0
Chieftronic PowerPlay GPU-850FC 12,0 15,9 19,7 28,1 34,0 33,3 56,0
Cooler Master MWE Gold 750 V2 12,2 16,0 21,0 34,6 42,0 41,6 76,4
XPG Pylon 450 12,6 18,5 28,4 63,0
Chieftronic PowerUp GPX-550FC 12,2 15,4 21,6 35,7 47,1
Chieftec BBS-500S 13,3 16,3 22,2 38,6
Cougar VTE X2 600 13,3 18,3 28,0 49,3 64,2
Thermaltake GX1 500 12,8 14,1 19,5 34,8 47,6
Thermaltake BM2 450 12,2 16,7 26,3 57,9
Super Flower SF-750P14XE 14,0 16,5 23,0 35,0 42,0 44,0 76,0
XPG Core Reactor 850 9,8 14,9 18,1 29,0 38,4 37,0 63,0
Asus TUF Gaming 750B 11,1 13,8 20,7 38,6 50,7 49,3 93,0
Chieftronic BDK-650FC 12,6 14,3 20,4 41,1 53,5 50,6
Cooler Master XG Plus 750 Platinum 13,8 14,2 18,9 36,5 43,0 40,0 61,1
Chieftec GPC-700S 15,6 21,4 30,9 63,5 84,0
Zalman ZM700-TXIIv2 12,5 19,5 30,8 62,0 83,0 80,0
Cooler Master V850 Platinum 17,8 20,1 24,6 34,5 38,3 37,8 58,5
Chieftec CSN-650C 10,7 12,5 17,5 32,0 43,5
Powerman PM-300TFX 12,0 20,0 38,2
Chieftec GPA-700S 13,4 19,3 30,3 64,1 86,5
XPG Probe 600W 12,8 19,6 29,5 58,0 80,0
Super Flower Leadex VII XG 850W 11,7 14,5 18,4 26,7 32,2
Cooler Master V850 Gold i Multi 10,8 14,6 19,8 32,0 37,0
Cooler Master V850 Gold V2 WE 11,3 13,6 17,2 29,0 36,2 35,6 62,5
Cooler Master MWE 750 Bronze V2 18,0 19,3 23,2 41,8 53,4 54,2 99,1
Chieftec EON 600W (ZPU-600S) 13,1 19,8 31,5 63,5 89,0
Formula AP-500MM 12,3 19,3 31,6 66,5
Zalman GigaMax III 750W 11,5 15,6 23,0 45,0 59,3 58,5 118,5
Deepcool PN850M 10,9 13,8 18,8 32,2 38,8
Formula V-Line 850 APMM-850BM 19,2 24,0 32,6 54,0 67,0 68,6 129,0
Redragon RGPS-850W 12,6 14,9 19,2 30,5 38,5 39,0 71,0
Chieftec Atmos 850W (CPX-850FC) 14,3 17,9 23,4 35,6 44,3 44,0 77,0
Chieftec Vita 850W (BPX-850-S) 11,4 15,4 23,1 41,7 53,7 51,5 97,0
Ocypus Delta P850 11,8 16,2 23,9 47,7 59,0
Formula V-Line APMM-1000GM 11,6 14,5 22,0 35,8 44,8 42,7 77,0
Formula V-Line VX Plus 650 13,1 21,0 37,0 88,6 127,0
HSPD HSI-850GF-BK 10,5 14,4 19,5 33,9 42,2 40,5 73,4
Chieftec Vega M 750W (PPG-750-C) 10,1 19,7 24,1 40,5 49,0 46,9 86,2
Azza PSAZ-850G 11,5 14,0 17,5 25,2 35,0

Данная модель имеет высокую экономичность во всех протестированных режимах и находится на лидирующих позициях по этому параметру.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
Вт
Azza PSAZ-850G 68
Cooler Master V850 Gold V2 WE 71
Super Flower Leadex VII XG 850W 71
XPG Core Reactor 750 72
XPG Core Reactor 850 72
Chieftec CSN-650C 73
Cooler Master V650 SFX 74
Deepcool PN850M 76
Chieftronic PowerPlay GPU-850FC 76
Redragon RGPS-850W 77
Cooler Master V850 Gold i Multi 77
HSPD HSI-850GF-BK 78
MSI MPG A750GF 79
Deepcool DQ650-M-V2L 79
Cougar GEX 850 80
Thermaltake GX1 500 81
Chieftronic PowerUp GPX-850FC 83
Cooler Master XG Plus 750 Platinum 83
Cooler Master MWE Gold 750 V2 84
Asus TUF Gaming 750B 84
Chieftronic PowerUp GPX-550FC 85
Chieftronic BDK-650FC 88
Super Flower SF-750P14XE 89
XPG Pylon 750 89
Chieftec BBS-500S 90
Fractal Design Ion Gold 850 91
Chieftec Atmos 850W (CPX-850FC) 91
Chieftec Vita 850W (BPX-850-S) 92
Chieftec Vega M 750W (PPG-750-C) 94,4
Zalman GigaMax III 750W 95
Chieftec BDF-650C 95
Cooler Master V850 Platinum 97
Cougar BXM 700 99
Ocypus Delta P850 100
Cooler Master MWE 750 Bronze V2 102
Cougar VTE X2 600 109
Thermaltake BM2 450 113
XPG Probe 600W 120
XPG Pylon 450 123
Deepcool DA600-M 125
Zalman ZM700-TXIIv2 125
Cooler Master Elite 600 V4 125
Chieftec GPA-700S 127
Chieftec EON 600W (ZPU-600S) 128
Formula AP-500MM 130
Formula V-Line 850 APMM-850BM 130
Chieftec GPC-700S 131
Formula V-Line VX Plus 650 160

В режимах с низкой нагрузкой эта модель занимает первое место в нашем рейтинге среди ранее протестированных моделей с мощностью до киловатта!

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Cougar BXM 700 237 1035 1980 3879 4883 4880
Cooler Master Elite 600 V4 231 1032 2016 4080 5195
Cougar GEX 850 235 1003 1933 3790 4739 4735 7205
Cooler Master V650 SFX 200 997 1924 3793 4751 4743
Chieftec BDF-650C 245 1042 1994 3815 4991 4970
XPG Core Reactor 750 202 1001 1914 3773 4746 4734 7205
Deepcool DQ650-M-V2L 228 997 1923 3808 4765
Deepcool DA600-M 251 1049 2015 4041 5133
Fractal Design Ion Gold 850 262 1029 1940 3830 4795 4776 7273
XPG Pylon 750 229 1011 1942 3863 4879 4877 7542
Chieftronic PowerUp GPX-850FC 244 1015 1940 3795 4725 4715 7177
MSI MPG A750GF 232 1014 1936 3772 4723 4713 7174
Chieftronic PowerPlay GPU-850FC 237 1015 1925 3750 4678 4672 7061
Cooler Master MWE Gold 750 V2 238 1016 1936 3807 4748 4744 7239
XPG Pylon 450 242 1038 2001 4056
Chieftronic PowerUp GPX-550FC 238 1011 1941 3817 4793
Chieftec BBS-500S 248 1019 1947 3842
Cougar VTE X2 600 248 1036 1997 3936 4942
Thermaltake GX1 500 244 1000 1923 3809 4797
Thermaltake BM2 450 238 1022 1982 4011
Super Flower SF-750P14XE 254 1021 1954 3811 4748 4765 7236
XPG Core Reactor 850 217 1007 1911 3758 4716 4704 7122
Asus TUF Gaming 750B 229 997 1933 3842 4824 4812 7385
Chieftronic BDK-650FC 242 1001 1931 3864 4849 4823
Cooler Master XG Plus 750 Platinum 252 1000 1918 3824 4757 4730 7105
Chieftec GPC-700S 268 1064 2023 4060 5116
Zalman ZM700-TXIIv2 241 1047 2022 4047 5107 5081
Cooler Master V850 Platinum 287 1052 1968 3806 4716 4711 7083
Chieftec CSN-650C 225 986 1905 3784 4761
Powerman PM-300TFX 237 1051 2087
Chieftec GPA-700S 249 1045 2017 4066 5138
XPG Probe 600W 244 1048 2010 4012 5081
Super Flower Leadex VII XG 850W 234 1003 1913 3738 4662
Cooler Master V850 Gold i Multi 226 1004 1925 3784 4704
Cooler Master V850 Gold V2 WE 230 995 1903 3758 4697 4692 7118
Cooler Master MWE 750 Bronze V2 289 1045 1955 3870 4848 4855 7438
Chieftec EON 600W (ZPU-600S) 246 1049 2028 4060 5160
Formula AP-500MM 239 1045 2029 4087
Zalman GigaMax III 750W 232 1013 1954 3898 4900 4893 7608
Deepcool PN850M 227 997 1917 3786 4720
Formula V-Line 850 APMM-850BM 300 1086 2038 3977 4967 4981 7700
Redragon RGPS-850W 242 1007 1920 3771 4717 4722 7192
Chieftec Atmos 850W (CPX-850FC) 257 1033 1957 3816 4768 4765 7245
Chieftec Vita 850W (BPX-850-S) 231 1011 1954 3869 4850 4831 7420
Ocypus Delta P850 235 1018 1961 3922 4897
Formula V-Line APMM-1000GM 233 1003 1945 3818 4772 4754 7245
Formula V-Line VX Plus 650 246 1060 2076 4280 5493
HSPD HSI-850GF-BK 223 1002 1923 3801 4750 4735 7213
Chieftec Vega M 750W (PPG-750-C) 220 1049 1963 3859 4809 4791 7325
Azza PSAZ-850G 232 999 1905 3725 4687

Гибридный режим охлаждения

Включается гибридный режим при помощи двухпозиционной кнопки, расположенной на задней (внешней) панели блока питания около клавиши отключения питания.

В гибридном режиме запуск вентилятора происходит только при достижении определенной температуры внутри корпуса блока питания. Производитель и мы измеряем эту температуру, как правило, в разных местах, но определенное представление об алгоритме работы системы управления вентилятором таким образом получить можно.

Включается вентилятор при температуре около 55 градусов, а выключается — в районе 44 градусов. Несмотря на то что разница между температурами выключения и включения вентилятора довольно большая, тут часто наблюдаются циклы старт/стоп при мощности нагрузки от 100 до 300 Вт включительно. На мощности 400 Вт и выше подобные особенности работы вентилятора уже малозаметны.

При этом на мощности 50 Вт и менее блок питания действительно может работать долговременно с остановленным вентилятором — как минимум в течение 120 минут.

Из недостатков работы гибридного режима стоит отметить резкий старт вентилятора, в ходе которого уровень шума на любой мощности кратковременно достигает значения около 32 дБА на расстоянии 0,35 метра. Не сказать, что это очень страшно и громко, но и хорошего в этом мало. Если же такой уровень шума не смущает, то включать гибридный режим смысла нет вообще, так как в режиме с постоянно вращающимся вентилятором уровень шума будет даже ниже.

Также стоит учитывать, что в случае работы с остановленным вентилятором температура компонентов внутри БП сильно зависит от окружающей температуры воздуха, и если та установится на уровне 40-45 °C, это приведет к более раннему включению вентилятора.

Температурный режим

Термонагруженность конденсаторов при работе на мощности вплоть до максимальной находится на невысоком уровне при постоянно вращающемся вентиляторе.

В гибридном режиме ситуация немного хуже.

В данном случае мы приводим максимальные значения температуры, на которых запускался вентилятор.

Экстремального нагрева мы не зафиксировали, но нагрев конденсаторов в данном режиме будет явно выше, чем в режиме с постоянно вращающимся вентилятором, особенно на мощности до 600 Вт включительно.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

В диапазоне мощности до 750 Вт включительно шум блока питания находится на минимально заметном уровне для жилого помещения в дневное время суток (25 дБА и менее).

На мощности 850 Вт уровень шума превышает 40 дБА — это высокий шум для жилого помещения в дневное время суток.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 750 Вт, причем до этой отсечки блок питания работает действительно тихо.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния менее полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно.

В данном случае шум электроники минимальный, услышать его невозможно даже с минимального расстояния, не говоря уже о собранной системе.

Потребительские качества

Потребительские качества Azza PSAZ-850G находятся на отличном уровне. Нагрузочная способность канала +12VDC высокая, что позволяет использовать данный БП в мощных системах с двумя видеокартами или одной максимально мощной.

С точки зрения акустической эргономики, блок питания обеспечивает комфорт при выходной мощности в пределах 750 ватт, при этом устройство работает с минимально заметным шумом. Однако на максимальной мощности шум высокий, что неудивительно.

Длина проводов достаточная для большинства современных корпусов, к тому же провода использованы полностью съемные.

Также отметим возможность подключения видеокарты посредством разъема питания PCIe 5.1.

Итоги

Azza PSAZ-850G — очень удачная реализация блока питания высокой мощности с соответствующей ценой. Эта модель оставила очень хорошее впечатление, если не считать не особо нужный в данном случае гибридный режим охлаждения, который реализован тут не самым лучшим образом.

Технико-эксплуатационные характеристики БП находятся на хорошем уровне, чему способствуют высокая нагрузочная способность канала +12VDC, высокая экономичность, низкая термонагруженность, высококачественный вентилятор с подшипником качения, а также конденсаторы японских компаний.